Tuesday, September 19, 2017

Amazon's CAPTCHA Patent Proposal Tests Your Physics Understanding

... well, more like your physics INTUITION on what should happen next.

It seems that Amazon has file a patent application that uses a physics engine to generate scenarios to see if you are a real person or a bot.

The company has filed a patent application for a new CAPTCHA method which would show you a 3D simulation of something about to happen to a person or object. That something would involve Newtonian physics — perhaps an item is about to fall on someone, or a ball is about to roll down a slope. The test would then show you several "after" scenarios and, if you pick the correct option, you've passed the test.
.
.
.
The idea is that, because you are a human, you have an "intuitive" understanding of what would happen next in these scenarios. But computers need much more information about the scene and "might be unable to solve the test", according to the application.

Definitely interesting, although in Fig. 3B shown in the article, both Fig (A) and Fig (B) might be possible depending on the ambiguity of the drawing.

But this brings me an important point that I've been telling my students in intro physics classes when they dealt with mechanics. We all ALREADY KNOW many of the things that will happen in cases like this. We do not need to learn physics or to be enrolled in a physics class to know the qualitative description of the dynamics of these systems. So we are not teaching you about something you are not familiar with.

What a formal physics lesson will do is to describe these things more accurately, i.e. in a QUANTITATIVE manner. We won't simply say "Oh, the ball will roll down that inclined plane." Rather, we will describe the motion of the ball mathematically, and we will be able to say how long the ball will take to each the bottom, at what speed, etc...etc. In other words, we don't just say "What goes up must come down", but we will also say "When and where it will come down". This is what separates physics (and science) from hand-waving, everyday conversation.

All of us already have an intuitive understanding of the physical systems around us. That's why Amazon can make such a CAPTCHA test for everyone. A physics lessons simply formalize that understanding in a more accurate and non-ambiguous fashion.

Zz.

Friday, September 15, 2017

Bell's Theorem - The Venn Diagram Paradox

Minute Physics is tackling Bell's theorem, with limited success.



It would have been nice if they included Malus' Law description in here, because that is what we knew before QM came around, and that is what we teach students in intro physics.

In any case, I still find it difficult to follow, especially if you didn't pay that much attention to the part when they are doing the counting. They went over this a bit too quickly to let it sink in.

Maybe your brain works faster than mine and can keep up.

Zz.

Sunday, September 10, 2017

Is Relativistic Mass Real?

I've mentioned about this issue several times on here. In this post, I've linked to a reference, and also a link to Lev Okun's paper in another post, that both debunked the concept of relativistic mass, and why it should not be used.

Unfortunately, as a physics instructor, I still see texts teaching this concept, and I have to work around it, telling the students the caveat on why what they should be cautious in what they are reading. It isn't easy, but I'd rather say something about it than let the students walk out of my class not knowing that this idea of "relativistic mass" is not what it has been popularly made out.

So I'm delighted that Don Lincoln has a video addressing this issue as well.



He explains it quite clearly, and also why we still sometime teach this concept to students in intro classes (unfortunately). Yes, I can understand why, but I still don't like it if it can be avoided without sacrificing the pedagogical reason for it.

It's a good video if you are still wondering what the fuss is all about.

Zz.

Sunday, September 03, 2017

Rebuilding Quantum Theory

Theorists and philosophers are trying to "rebuild" quantum theory's foundation and axioms. Good luck to them!

Still, this is a rather good article on some of the issues surrounding concepts that still do not sit well with many physicists. Those of us who are in the "Shut up and calculate" camp will leave it up to them to sort things out. We are busy with doing other things.

:)

Zz.

Sunday, August 20, 2017

RIP Vern Ehlers

The first physicist ever elected to the US Congress has passed away. Vern Ehlers, a moderate Republican from Michigan, passed away at the age of 83.

Vern Ehlers, 83, a research physicist and moderate Republican who represented a western Michigan congressional district for 17 years, died late Tuesday at a Grand Rapids nursing facility, Melissa Morrison, funeral director at Zaagman Memorial Chapel, said Wednesday.

I reported on here when he decided to retire back in 2010. And of course, when he was serving Congress along with 2 other elected officials who were physicist, I cited a NY Times article that clearly demonstrated how desperate we are to have someone with science background serving as politicians.

Unfortunately, right now, the US Congress has only ONE representative who is a trained physicist (Bill Foster). It somehow reflects on the lack of rationality that is going on in Washington DC right now.

Zz.

Solar Eclipse, Anyone?

It's a day before we here in Chicago will get to see a partial solar eclipse. I know of people who are already in downstate Illinois at Carbondale to view the total eclipse (they will get another total eclipse in 2024, I think).

So, any of you will be look up, hopefully with proper eye wear, to view the eclipse tomorrow? I actually will be teaching a class during the main part of the eclipse, but I may just let the students out for a few minutes just to join the crowd on campus who will be doing stuff for the eclipse. Too bad I won't be teaching optics, or this will be an excellent tie-in with the subject matter.

Zz.

Tuesday, August 08, 2017

Hyperfine Splitting of Anti-Hydrogen Is Just Like Ordinary Hydrogen

More evidence that the antimatter world is practically identical to our regular matter world. The ALPHA collaboration at CERN has reported the first ever measurement of the anti-hydrogen hyperfine spectrum, and it is consistent to that measured for hydrogen.

Now, they have used microwaves to flip the spin of the positron. This resulted not only in the first precise determination of the antihydrogen hyperfine splitting, but also the first antimatter transition line shape, a plot of the spin flip probability versus the microwave frequency.

“The data reveal clear and distinct signatures of two allowed transitions, from which we obtain a direct, magnetic-field-independent measurement of the hyperfine splitting,” the researchers said.

“From a set of trials involving 194 detected atoms, we determine a splitting of 1,420.4 ± 0.5 MHz, consistent with expectations for atomic hydrogen at the level of four parts in 10,000.”

I am expecting a lot more studies on these anti-hydrogen, especially now that they have a very reliable way of sustaining these things.

The paper is an open access on Nature, so you should be able to read the entire thing for free.

Zz.

Thursday, August 03, 2017

First Observation of Neutrinos Bouncing Off Atomic Nucleus

An amazing feat out of Oak Ridge.

And it’s really difficult to detect these gentle interactions. Collar’s group bombarded their detector with trillions of neutrinos per second, but over 15 months, they only caught a neutrino bumping against an atomic nucleus 134 times. To block stray particles, they put 20 feet of steel and a hundred feet of concrete and gravel between the detector and the neutrino source. The odds that the signal was random noise is less than 1 in 3.5 million—surpassing particle physicists’ usual gold standard for announcing a discovery. For the first time, they saw a neutrino nudge an entire atomic nucleus.

Currently, the entire paper is available from the Science website.

Zz.

Wednesday, August 02, 2017

RHIC Sees Another First

The quark-gluon plasma created at Brookhaven's Relativistic Heavy Ion Collider (RHIC) continues to produce a rich body of information. They have now announced that the quark-gluon plasma has produced the most rapidly-spinning fluid ever produced.

Collisions with heavy ions—typically gold or lead—put lots of protons and neutrons in a small volume with lots of energy. Under these conditions, the neat boundaries of those particles break down. For a brief instant, quarks and gluons mingle freely, creating a quark-gluon plasma. This state of matter has not been seen since an instant after the Big Bang, and it has plenty of unusual properties. "It has all sorts of superlatives," Ohio State physicist Mike Lisa told Ars. "It is the most easily flowing fluid in nature. It's highly explosive, much more than a supernova. It's hotter than any fluid that's known in nature."
.
.
.
We can now add another superlative to the quark-gluon plasma's list of "mosts:" it can be the most rapidly spinning fluid we know of. Much of the study of the material has focused on the results of two heavy ions smacking each other head-on, since that puts the most energy into the resulting debris, and these collisions spit the most particles out. But in many collisions, the two ions don't hit each other head-on—they strike a more glancing blow.

It is a fascinating article, and you may read the significance of this study, especially in relation to how it informs us on certain aspect of QCD symmetry.

But if you know me, I never fail to try to point something out that is more general in nature, and something that the general public should take note of. I like this statement in the article very much, and I'd like to highlight it here:

But a logical "should" doesn't always equal a "does," so it's important to confirm that the resulting material is actually spinning. And that's a rather large technical challenge when you're talking about a glob of material roughly the same size as an atomic nucleus.

This is what truly distinguish science with other aspects of our lives. There are many instances, especially in politics, social policies, etc., where certain assertions are made and appear to be "obvious" or "logical", and yet, these are simply statements made without any valid evidence to support it. I can think of many ("Illegal immigrants taking away jobs", or "gay marriages undermines traditional marriages", etc...etc). Yet, no matter how "logical" these may appear to be, they are simply statements that are devoid of evidence to support them. Still, whenever they are uttered, many in the public accept them as FACTS or valid, without seeking or requiring evidence to support them. One may believe that "A should cause B", but DOES IT REALLY?

Luckily, this is NOT how it is done in science. No matter how obvious it is, or how verified something is, there are always new boundaries to push and a retesting of the ideas, even ones that are known to be true under certain conditions. And a set of experimental evidence is the ONLY standard that will settle and verify any assertion and statements.

This is why everyone should learn science, not just for the material, but to understand the methodology and technique. It is too bad they don't require politicians to have such skills.

Zz.

Is QM About To Revolutionize Biochemistry?

It is an intriguing thought, and if these authors are correct, a bunch of chemical reactions, even at higher temperatures, may be explained via quantum indistinguishibility.

The worlds of chemistry and indistinguishable physics have long been thought of as entirely separate. Indistinguishability generally occurs at low temperatures while chemistry requires relatively high temperatures where objects tend to lose their quantum properties. As a result, chemists have long felt confident in ignoring the effects of quantum indistinguishability.

Today, Matthew Fisher and Leo Radzihovsky at the University of California, Santa Barbara, say that this confidence is misplaced. They show for the first time that quantum indistinguishability must play a significant role in some chemical processes even at ordinary temperatures. And they say this influence leads to an entirely new chemical phenomenon, such as isotope separation and could also explain a previously mysterious phenomenon such as the enhanced chemical activity of reactive oxygen species. 

They have uploaded their paper on arXiv.

Of course, this is still preliminary, but it provides the motivation to really explore this aspect that had not been seriously considered before. And with this latest addition, it is just another example on where physics, especially QM, are being further explored in biology and chemistry.

Zz.

Sunday, July 30, 2017

Is Radiation Dangerous?

Believe it or not, there are still people out there who get scared witless and going out of their minds with their phobia about "radiation". I get questions related to this often enough that whenever I find info like this one, I want to post it here.

Don Lincoln decides to tackle this issue regarding "radiation". If you have little knowledge and idea about this, this is the video to watch.



Zz.

Quantum Tunneling Time

Chad Orzel has highlighted a couple of papers (one still a preprint) on the issue of quantum tunneling time or speed. I missed these, just like him, but unlike him, I didn't have as glamorous of an excuse - I was busy finishing up teaching a summer physics class.

I'll let you read have the pleasure of reading his article, because he also gave a quick background on the quantum tunneling phenomenon, if you're not familiar with it. But as background information, I did quantum tunneling spectroscopy measurement for my PhD research and dissertation. So I'm familiar with this, but not in the sense of the detailed question on tunneling time. We simply used the phenomenon to measure the properties of the material of interest, even though in the end, I ended up looking into the detailed description of the tunneling matrix elements, which are often simplified or ignored.

Still, the issue of tunneling time has always been something in the back of my mind, and the question on whether this thing happens "very fast" or "instantaneously" (just like quantum entanglement) has always popped up now and then. It is good to see new studies on this, even though the combined conclusion out of these two results is still uncertain.

Zz.

1. N. Camus et al., Phys. Rev. Lett. 119, 023201 (2017).
2. https://arxiv.org/abs/1707.05445


Tuesday, July 11, 2017

The Higgs - Five Years In

In case you've been asleep the past 5 years or so and what to catch up on our lovable Higgs, here is a quick, condensed version of the saga so far.

Where were you on 4 July 2012, the day the Higgs boson discovery was announced? Many people will be able to answer without referring to their diary. Perhaps you were among the few who had managed to secure a seat in CERN’s main auditorium, or who joined colleagues in universities and laboratories around the world to watch the webcast.

This story promises to have lots of sequels, just like the movies released so far this year.

Zz.

The Universe's First Atoms Verify Big Bang Theory

The Big Bang theory makes many predictions and consequences, all of them are being thoroughly tested (unlike Intelligent Design or Creationism). These predictions and consequences are quantitative in nature, i.e. the theory predicts actual numbers.

Many of these "numbers" have been verified by experiments and observations, and they are continually being measured to higher precision. This latest one comes about from the prediction of the amount of certain gases during the early evolution of our universe.

But more data has just come in! Two new measurements, in a paper just coming out now by Signe Riemer-Sørensen and Espen Sem Jenssen, of different gas clouds lines up with a different quasar have given us our best determination of deuterium's abundance right after the Big Bang: 0.00255%. This is to be compared with the theoretical prediction from the Big Bang: 0.00246%, with an uncertainty of ±0.00006%. To within the errors, the agreement is spectacular. In fact, if you sum up all the data from deuterium measurements taken in this fashion, the agreement is indisputable.

The more they test it, the more convincing it becomes.

Zz.

Wednesday, June 14, 2017

The Physics of Texting And Driving

First of all, let me be clear on this. I hate, HATE, HATE drivers who play with their mobile devices while they drive. I don't care if it is texting (stupid!) or just talking on their phones. These drivers are often driving erratically, unpredictably, and often do not use turn signals, etc. They are distracted drivers, and their stupid acts put my life and my safety in jeopardy. My nasty thought on this is that I wish Darwin would eliminate them out of the gene pool.

There! I feel better now. Coming back to the more sedate and sensible topic related to physics, Rhett Allain has a nice, short article on why physics will rationally explain to you why texting and driving is not safe, and why texting and driving ANNOYS OTHER PEOPLE!

OK, so my calmness didn't last very long.

The physics is quite elementary that even any high-school physics students can understand. And now, I am going back to my happy place.

Zz.